
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Analysis of Iterative Deepening Search and Breadth-

First Search Algorithm Complexity Implemented in

Minimax for Solving Mate-in-N Chess Puzzle

Ibrahim Ihsan Rasyid - 13522018

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: 13522018@std.stei.itb.ac.id

Abstract—The minimax algorithm is a fundamental approach

in game theory and artificial intelligence, particularly in solving

chess puzzles. In this study, we investigate the complexity of two

search algorithms, Iterative Deepening Search (IDS) and

Breadth-First Search (BFS), when implemented within the

minimax framework for solving the Mate-in-N chess puzzle. The

Mate-in-N puzzle involves finding a sequence of moves that

forces checkmate in a specified number of moves. This paper

contributes to the understanding of search algorithm efficiencies

in combinatorial game problems, presenting a nuanced

evaluation that aids in selecting appropriate strategies for

different computational scenarios in chess and beyond.

Keywords—breadth-first search; iterative deepening search;

checkmate; minimax

I. INTRODUCTION (HEADING 1)

Chess is one of the most popular board games, originating
in the 7th century and evolving globally until the first
competition was held in 1834. It remains well-known today.
The increasing competitiveness of chess has heightened the
urgency of chess education, with puzzles being one of the most
frequently used teaching methods. Among the various types of
puzzles, the mate-in-N puzzle is particularly effective in
enhancing awareness to checkmate opportunities during the
game.

Fig. 1.1 Illustration of mate-in-n
puzzle problem

(Source: chess.com)

Fig. 1.2 Illustration of a solved mate-
in-n puzzle

(Source : chess.com)

In the modern era, numerous chess engines have been
developed to help humans gain a deeper understanding of chess

and to attempt to find concrete solutions to chess problems.
The rapid development of chess engines inspired the idea of
hosting tournaments between these engines, leading to the
inaugural Top Chess Engine Competition (TCEC) in 2010. To
date, TCEC has been held for 25 seasons, with the chess engine
Stockfish winning 15 seasons and being acclaimed as the
strongest chess engine currently.

One of the algorithms frequently used in chess engines is
the minimax algorithm. The minimax algorithm is a decision-
making algorithm widely used in game theory and artificial
intelligence to minimize the possibility of losing in the worst-
case scenario. This algorithm is commonly applied in zero-sum
games or turn-based games with two players, such as tic-tac-
toe, checkers, shogi, and chess.

In these games, minimax aims to maximize the smallest
possible gain. In other words, a player strives to maximize their
advantage while the opponent attempts to minimize it.
Typically, the evaluation of the board position is a positive
number for one player and a negative number for the other. In
chess, a positive value signifies an advantage for the player
with the white pieces, and vice versa.

II. THEORETICAL FOUNDATION

A. Graph Traversal

Graph traversal algorithms systematically visit the nodes
within a graph, ensuring that every node is explored in an
organized manner. Assuming the graph is connected, meaning
there is a path between any two nodes, it serves as an effective
representation of complex problems. Traversing a graph thus
involves searching for a solution to the problem encoded by the
graph's structure. This process is fundamental in various
applications, such as network analysis, pathfinding in games,
and solving puzzles. Key traversal methods include Depth-First
Search (DFS) and Breadth-First Search (BFS), each offering
distinct strategies and advantages depending on the specific
problem requirements.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

B. Breadth-First Search

Breadth-First Search (BFS) is one of the algorithms used
for graph traversing. It proceeds in a concentric manner by
visiting first all the vertices that are adjacent to a starting
vertex, then all unvisited vertices two edges apart from it,
and so on, until all the vertices in the same connected
component as the starting vertex are visited. If there remain
unvisited vertices, the algorithm must be restarted at an
arbitrary vertex of another connected component of the
graph

In Fig. 2.1, the sequence of nodes visited by BFS from node
A would be A, B, C, D, E, F, G, H.

BFS is a fundamental graph traversal algorithm with
notable properties regarding completeness, optimality, time
complexity, and space complexity. BFS is complete, meaning
it will find a solution if one exists, because it explores all
possible nodes level by level. It is also optimal when the cost to
reach a node is uniform, as it always finds the shortest path to
the solution. The time complexity of BFS is O(bd), where b is
the branching factor (average number of successors per node)
and d is the depth of the shallowest solution. However, BFS
has a significant drawback in its space complexity, which is
also O(bd). This high space requirement arises because BFS
stores all nodes at the current level before moving on to the
next, leading to exponential growth in memory usage as the
search depth increases.

C. Depth-First Search

Depth-First Search (DFS) is another algorithm used for
graph traversing. On each iteration, the algorithm proceeds to
an unvisited vertex that is adjacent to the one it is currently in.
(If there are several such vertices, a tie can be resolved
arbitrarily. As a practical matter, which of the adjacent
unvisited candidates is chosen is dictated by the data structure
representing the graph. In our examples, we always break ties
by the alphabetical order of the vertices.) This process
continues until a dead end—a vertex with no adjacent unvisited
vertices— is encountered. At a dead end, the algorithm backs
up one edge to the vertex it came from and tries to continue
visiting unvisited vertices from there. The algorithm eventually
halts after backing up to the starting vertex, with the latter
being a dead end. By then, all the vertices in the same
connected component as the starting vertex have been visited.
If unvisited vertices remain, the depth-first search must be
restarted at any one of them.

In Fig 2.2, the sequence of nodes visited by DFS from node
A would be A, B, D, E, H, F, G, C

DFS is a fundamental graph traversal algorithm with
distinct characteristics regarding completeness, optimality, time
complexity, and space complexity. DFS is not complete in
general because it can get stuck in infinite branches and may
fail to find a solution even if one exists. DFS will be complete
as long as the value of 𝑏 is finite, and there is handling for
redundant paths and repeated states. It is also not optimal, as it
does not guarantee the shortest path to a solution. The time
complexity of DFS is O(bm), where b is the branching factor
and m is the maximum depth of the search tree. Despite these
limitations, DFS has a significant advantage in terms of space
complexity, which is O(bm). This efficiency arises because
DFS only needs to store a single path from the root to a leaf
node along with the remaining unexplored siblings for each
node on the path, resulting in much lower memory usage
compared to BFS.

D. Iterative Deepening Search

Another algorithm used for graph traversing is Iterative
Deepening Search (IDS). IDS performs a series of DFS,
progressively increasing the depth cutoff until a solution is
found. This approach combines the space efficiency of DFS
with the optimality of BFS. The underlying assumption is that
most solution nodes are located at deeper levels, making the
repeated generation of nodes at higher levels inconsequential.
By incrementally deepening the search, IDS efficiently handles
large search spaces without the high memory consumption
associated with BFS.

IDS is an algorithm that combines the strengths of DFS and
BFS, making it complete, optimal, and relatively efficient in
terms of time and space complexity. IDS is complete because it
incrementally explores all depths, ensuring that it will find a
solution if one exists. It is also optimal when the cost to reach a
node is uniform, as it guarantees finding the shortest path to the
solution by progressively deepening the search. The time
complexity of IDS is O(bd), where b is the branching factor and
d is the depth of the shallowest solution. Although it seems that
repeatedly exploring nodes might be inefficient, the overhead is
minimal since most nodes are near the bottom level. The space
complexity of IDS is O(bd), similar to DFS, because it only
needs to store the current path and a few sibling nodes at each
level, resulting in much lower memory usage compared to
BFS.

E. Minimax Algorithm in Game Theory

A strategic game is a model of interactive decision-making,

where each participant selects their course of action

definitively, and these decisions occur simultaneously. The

model includes a finite set N of players, and for each player i,

there exists a set Ai of actions along with a preference relation

Fig. 2.1 Illustration of BFS algorithm for traversing an entire graph
(Source: [1])

Fig. 2.2 Illustration of DFS algorithm for traversing an entire graph
(Source: [1])

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

on the set of action profiles. An outcome is referred to as an

action profile a = (aj)j∈N, and the set of outcoumes xj∈NAj is

denoted as A.

A strategic game ({1, 2}, (Ai), (⧽A)) is strictly competitive if

for any a ∈ A and b ∈ A we have a ⧽1 if and only if b ⧽2. A

strictly competitive game is sometimes called zero-sum

because if player 1’s preference relation ⧽1 is represented by

the payoff function u1 then player 2’s preference relation is

represented by u2 with u1+u2 = 0.

A player i is said to maxminimizes if he chooses an action

that is best for him on the assumption that whatever he does,

player j will choose her action to hurt him as much as possible.

Let ({1, 2}, (Ai), (ui)) be a strictly competitive game. The

action x* ∈ A1 is a maxminimizer for player 1 if

for all x ∈ A1. Similarly, the action y* ∈ A2 is a

maxminimizer for player 2 if

for all y ∈ A2. In words, a maxminimizer for player i is an

action that maximizes the payoff that player i can guarantee.

Next on we will refer this as minimax algorithm

Fig. 2.3 Illustration of minimax algorithm tree

(Source: https://en.wikipedia.org/wiki/Minimax)

F. Chess and Chess Puzzle

Chess is a board game which is played between two

opponents (light-colored/white and dark-colored/black) who

move their pieces alternately, with the objective is to place the

opponent’s king in “under attack” in such a way that the

opponent does not have any legal move. The player who

achieves this goal is said to have “checkmated” the opponent’s

king and to have won the game, while the opponent king

whose king has been checkmated has lost the game

A chess puzzle is a puzzle set by the composer using chess

pieces on a chess board, which presents the solver with a

particular task. For instance, a position may be given with the

instruction that White is to move first, and checkmate Black in

two moves against any possible defence. Most positions which

occur in a chess puzzle are 'unrealistic' in the sense that they

are very unlikely to occur in over-the-board play.

III. PROBLEM ANALYSIS

In this section, we will discuss how solving a mate-in-n

chess puzzle relates to and can be accomplished using IDS and

BFS algorithms.

A. Mapping the Problem to the Elements of IDS and BFS

In the problem of solving an n-move checkmate in a chess

puzzle, our task is to determine the sequence of moves that

leads the game to the desired outcome, specifically when the

opponent's king is in checkmate. Initially, there is a starting

position with the pieces arranged in such a way that

checkmating the opponent's king is possible within a few

moves. In this problem, we can treat a game state as a node,

and each edge connecting two nodes represents a legal move

that changes the board's state. Therefore, IDS and BFS will

search with the checkmate condition as the target node.

In searching with IDS, the algorithm will begin from the

initial state, then proceed to the next board state by making a

legal move from the previous state. The search is conducted in

a depth-first manner with an initial depth of 1, incrementing

by 2 if a certain depth fails to find the target node. This

process continues until the checkmate condition is found.

In searching with BFS, the algorithm will examine each

board state resulting from legal moves made from the initial

state. If the target node is not found in a particular board state,

the algorithm will continue searching from each child of every

board state. This process continues until the checkmate

condition is found.

It is important to note that in solving this puzzle, only one

player is trying to reach the checkmate state, while the

opponent will attempt to delay the checkmate. This

consideration is crucial because, without it, the quality of the

solution would be poor due to unrealistic search results. A

rational chess player would not foolishly move their king

toward the opponent's pieces, so the opponent must make the

best moves, determined with the help of a chess engine.

In fact, the implementation of IDS and BFS in chess is not

limited solely to solving n-move checkmate puzzles. However,

if the assurance of checkmate within a few moves is not

guaranteed, the generation of nodes will be extensive.

Therefore, to simplify the implementation in programming,

the author specifies the discussion only on solving n-move

checkmate puzzles.

B. A View on Python Chess Module

Python language provides a module for chess computations
called the chess module. Documentation is available on the
following link. This module offers various features utilized in
this paper, such as Board, Move, Portable Game Notation
(PGN) parsing and writing, Game model, and engine analysis

1. Board

Board is a Python class that, upon initialization,
generates the starting position of a standard chess game. An
object of the Board class can be manipulated by making
moves or by copying it to another variable. Player is
represented as a boolean, meaning that white is true and
black is false. Fig. 3.1 shows the output when we print a
board object. A dot represents an empty square, uppercase
letters represent white’s pieces, vice versa

https://en.wikipedia.org/wiki/Minimax
https://python-chess.readthedocs.io/en/latest/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Fig. 3.1 Illustrations of Board output

2. Move

The Move class represents a move from one square to
another using the Universal Chess Interface (UCI) notation.
For example, "e3e5" denotes a move of a piece from square
e3 to e5.

3. PGN

PGN (Portable Game Notation) is a standard text format
for representing a chess game. Parsing a PGN file can be
performed, and it will return a Game object representing the
chess game.

4. Game

A game is represented as a tree of various moves, with
each node being a state or position on the board. The
GameNode is a class that represents a node in the game
tree.

5. Engine Analysis

In this module, there is a function available to analyze a
position on the board and return a numerical representation
of the analysis result. The analysis is performed by an
external chess engine such as Stockfish, Torch, and others.

IV. IMPLEMENTATION

A. IDS Implementation Program

IDS is implemented as a class with a method `findSolution`
to execute IDS algorithm as shown in Fig. 4.1. It is instantiated
with the initial board as its attribute. The method `findSolution`
will call `DLS` method with initial depth 1, and will be
repeated until it reaches checkmate state and increments the
depth with 2.

The `DLS` method is a function that performs recursive
`DFS` search with a specific maximum depth. It iterates
through each legal move of a board and then calls the `DLS`
method. The program will stop if no solution is found at that
depth or if a checkmate position is encountered.

B. BFS Implementation Program

Similar to IDS, BFS is implemented as a class with a

method called `findSolution` to execute the BFS algorithm as

depicted in Fig. 4.2. The class is instantiated with the initial

board as its attribute. The `findSolution` method will call the

`runBFS` method to generate a solution.

The `runBFS` method executes the BFS algorithm using a

deque data structure. Each legal move of a board is enqueued

into the deque as a child node representing a board that has

undergone one move. The program will stop when a board in a

checkmate position is found, and it will call the `makePath`

method to reconstruct each move taken to reach that board.

Fig. 4.1 Implemetation of IDS class

Fig. 4.2 Implementation of BFS class

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

C. Other Functions and Classes Implemented

To support the IDS and BFS algorithms, some function

and class is implemented as depicted in Fig. 4.3. The `Algo`

class is an abstract base class that inherits from the `IDS` and

`BFS` classes. The `Result` class is a data structure for storing

the output of the program. The `sort_moves_by_evaluation`

function is a function to sort a set of legal moves owned by a

board state. This function is used to determine the moves

taken by the opponent in the puzzle because we want the

opponent to always make the best move to avoid making

foolish moves.

Fig. 4.3 Supporting Functions and Classes

V. TESTING

In this section, the results of tests conducted on 4 samples

will be presented. Subsequently, the results will be discussed

based on their time and space complexity.

A. Test Results

We will test with 4 different depths. As mate-in-one is too

easy to solve, we will start from mate-in-two.

1. Mate-in-two

We use a game I recently played online in chess.com.

Fig. 5.1 alexnomad vs sunegoo, 1 June 2024

(Source: chess.com)

In this game, my opponent hung a clear mate-in-two

just to grab my bishop at f6. I played as black

We save the PGN file as mate-in-2.pgn

Fig. 5.2 Mate-in-two test using IDS

Fig. 5.3 Mate-in-two test using BFS

As we see, both algorithm can solve the mate-in-two

problem

2. Mate-in-three

We use a daily puzzle by chess.com 11 June 2024

edition.

Fig. 5.4 Daily Puzzle, 11 June 2024

(Source: chess.com)

This is an interesting puzzle, as white already has

battery of two rooks and a queen ready to attack

opponent’s king. It is a mate-in-three situation, and it is

white to move

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

We save the PGN file as mate-in-3.pgn

Fig. 5.5 Mate-in-three test using IDS

Fig. 5.6 Mate-in-three test using BFS

Both algorithm successfully solved the problem

3. Mate-in-four

We use another game I have played online recently.

Fig. 5.7. Daily Puzzle, 8 June 2024

(Source: chess.com)

In this game, the evaluation bar indicated a mate-in-

four. However, due to time pressure with only 17 seconds

left, I ended up playing 8 moves before finally

checkmating my opponent.

We save the PGN file as mate-in-4.pgn

Fig. 5.8 Mate-in-four test using IDS

Unfortunately, my laptop crashed when I try to run the BFS

B. Result Analysis

Below is the table of test results that have been conducted:

Test Case Depth
Time (ms)

IDS BFS

mate-in-two 3 1867,44 59528,37

mate-in-three 5 2552,55 65401,19

mate-in-four 7 7589,16 infinite
Table 5.1 Test results

It is evident that the execution time of BFS is significantly

longer than that of IDS. This aligns with the theory that the

time complexity for IDS is O(bd), while the time complexity

for BFS is O(bd). As for space complexity, I believe it doesn't

need further explanation since it was clear that my laptop

almost froze while attempting to run the mate-in-four test.

VI. CONCLUSION

The IDS and BFS algorithms are two of the graph search

algorithms, and the problem of finding a solution for mate-in-

n chess puzzle is one implementation of these algorithms.

Despite some shortcomings in the implementation, the author

has successfully demonstrated that both algorithms are

relevant in solving this problem.

Moving forward, the author suggests:

- Optimizing BFS so that the program can run

concurrently.

- Trying to run the BFS algorithm on more capable

devices.

VII. APPENDIX

Program used in this paper can be seen here.

The author also made a video explanation of this paper. It
can be seen here.

ACKNOWLEDGMENT

https://github.com/ibrahim-rasyid/Makalah-Stima_13522018
https://youtu.be/K8p_FGjcows

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

All Praise and gratitude to Allah Subhanahu wa Ta’ala, for
by His mercy, the paper titled “Analysis of Iterative Deepening
Search and Breadth-First Search Algorithm Complexity
Implemented in Minimax for Solving Mate-in-N Chess Puzzle”
has been successfully completed. Also, gratitude is extended to
the lecturer for IF2211 Algorithm Strategies course, Dr. Nur
Ulfa Maulidevi, S.T, M.Sc., for the guidance and motivation
provided throughout her tenure in teaching the students.

REFERENCES

[1] Munir, Rinaldi. 2024. Breadth/Depth First Search (BFS/DFS). [online]
Available at:
<https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2023-2024/BFS-
DFS-2021-Bag1-2024.pdf> [Accessed 12 June 2024 08:56]

[2] Levitin, Anany. Introduction to the Design & Analysis of Algorithms 3rd
Edition. Addison-Wesley, 2003.

[3] Osborne, Martin J., Ariel Rubenstein. 1994. A Course in Game Theory.
Cambridge, Massachusetts: The MIT Press

STATEMENT OF ORIGINALITY

I hereby declare that this paper is my own writing, not an

adaptation, or translation of someone else's paper, and not

plagiarized.

Bandung, 12 Juni 2024

Ibrahim Ihsan Rasyid (13522018)

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2023-2024/BFS-DFS-2021-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2023-2024/BFS-DFS-2021-Bag1-2024.pdf

